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The stability of propagation of a plane flame in the quasi-steady 
regime has been investigated by L. D. Landau [1, 2], who treated 
the laminar flame as a discontinuity of density, temperature, pres- 
sure, and velocity propagating through the gas at a constant speed. 
The result was unexpected: the flame was predicted to be absolutely 
unstable. The disagreement between this theoretical prediction and 
known experimental  data has Ied to several theoretical and experimen- 
tal studies [3-8] .  

The theoretical studies (reviewed in [4] ) considered the stabilizing 
effect of transport processes (viscosity, thermal conductivity, diffusion) 
for the case in which the wavelength of the perturbations was of the 
order of the flame front thickness. In this case the flame front cannot 
be treated as an infinitesimally thin hydrodynamic discontinuity, as in 
Landau's work, and the effect of the perturbations on the structure and 
speed of the flame front must be taken into account. The best known 
of these studies is that of Markstein [3], who accounted for the transfer 
processes by introducing a constant which related the change of the 
speed of the flame front to its curvature. ( It should be noted that iong 
before Markstein's work [3], Zel 'dovich [9] had noted the effect of the 
ratio between the thermal and mass diffusivities of the component 
which controls the chemical  reaction on the stability of  the f lame. ) 

The studies reported in [3, 4] did not explain the disagreement 
between Landau's theory and experiment.  The critical Reynolds num-  
bers characterizing the onset of instability which were obtained in 
these studies were of order unity, whereas experimentally one finds 
stable flames at much higher Reynolds numbers.  

The experimental  studies reported in [5-8]  at tempted to observe 
the instability predicted by Landau and to measure the crit ical condi-  
tions. In view of the fact that experiments involving f lame propaga- 
tion in tubes or combustion in various burners are complicated by sec- 
ondary effects (turbulence, heat  transfer, e tc . )  which are neglected in 
the theory, it is more convenient to study a spherical f lame propaga- 
ting through a combustible gas. Such experiments, carried out first 
by Zel 'dovich and Rozlovskii [5], and later by Shchelkin, Troshchin, 
and their collaborators [6-8], showed that the crit ical Reynolds num-  
bers are of order 104-10 s. 

However, these studies neglected the fact that in the case of a 
spherical flame the instability is affected by the increase of f lame 
front surface area. In particular, the instability must be defined in a 
different way than in the plane case, since a deformation of the flame 
front and a change of its velocity of propagation can be observed only 
if the amplitude of the perturbation increases faster than the d imen-  
sions of the f lame.  In this paper the criterion for instability is the in-  
crease with t ime of the relative amplitude of perturbation of the f lame 
surface (the ratio of the amplitude and the instantaneous radius). Our 
analysis of the stability of propagation of a spherical f lame is based 
on the hydrodynamic formulation of Landau and Markstein. We show 
that the flame is stable with respect to the Iow spherical harmonics of 
the perturbations, because the rate of growth of these harmonics is 
lower than the speed of propagation of the f lame.  As regards higher 
harmonics, we find that the curvature of the perturbations has a sig- 
nificant effect on the speed of propagation of the flame (this was tak- 
en into account in Markstein's approximation [3]), which stabilizes 
the f lame up to a certain point in t ime .  This t ime determines the 
crit ical Reynolds number .  

It will be shown that the cri t ical  Reynolds number can reach a 
relatively high value, 103-104, if  one interprets Markstein's constant 

as a parameter  strongly dependent on the activation energy of the 
chemical  reaction in the f lame.  This interpretation gives better agree-  

ment  with exper imental  results [5-8] .  The theoretical model  is also 

in good qualitative agreement with experimental  observations of the 
development of the perturbations. 

i 

F i g .  1 

NOTATION 

r, 0, ~ - spher i ca l  coordinates, t - t i m e ,  u n - n o r m a l  speed of 
propagation of the flame, c~-ratio of densities of hot and cold gas, 
g, O, ~-dimensionless spherical coordinates, ~--dimensionless t ime,  
Vr, v 0, r e - v e l o c i t y  components in spherical coordinates, p - p r e s -  
sure, p-dens i ty ,  ~ -ve ioc i t y  potential, G-source  strength, R - f l a m e  
radius, A-perturbat ion amplitude, X-perturbation wavelength, k -  
wave number, s -per turba t iun  of f lame surface, g-d imens ionless  
perturbation of f lame surface, A- rad ius  of curvature, n--index of 
spherical harmonic, m-pe r iod ic i ty  parameter with respect to the 
angle r f i - u n k n o w n  functions (i = 1, 2, 3, 4), ~ i - roo t s  of char-  
acteristic equation for the spherical f lame, a i - r o o t s  of the charac-  
teristic equation for the plane flame, p -Marks te in ' s  constant, 

un r 
v ~ - ~ -  , ~ v 2 t  ' ~ = l n t ,  

8 2 ~  
n =v~t ,  ~ =  ~7~t ' k = - L - "  

Superscripts: ~  variable; ' -per turbat ion .  Subscripts: 
1, 2 - c o l d  and hot gas, respectively; 0 - in f in i ty  (r--~ ~). 

w F o r m u l a t i o n  o f  t h e  p r o b l e m .  O u r  a n a l y s i s  o f  

t h e  s t a b i l i t y  o f  a s p h e r i c a l  f l a m e  p r o p a g a t i n g  t h r o u g h  

a s p a c e  f i l l e d  w i t h  c o m b u s t i b l e  g a s  w i l l  b e  b a s e d  o n  

t h e  a s s u m p t i o n s  o f  L a n d a u  a n d  M a r k s t e i n  [ 1 - 3 ] .  W e  

s h a l l  r e g a r d  t h e  f l a m e  f r o n t  a s  a s u r f a c e  o f  d i s c o n -  

t i n u i t y  o f  v e l o c i t y ,  d e n s i t y ,  t e m p e r a t u r e ,  a n d  p r e s -  

s u r e  w h i c h  p r o p a g a t e s  t h r o u g h  t h e  g a s  w i t h  a s p e e d  

w h i c h  d e p e n d s ,  i n  g e n e r a l ,  o n  t h e  c u r v a t u r e  o f  t h e  

s u r f a c e .  W e  a s s u m e  t h a t  t h e  f l a m e  p r o p a g a t e s  t h r o u g h  

a n  i d e a l  i n c o m p r e s s i b l e  g a s  ( t he  d e n s i t y  i s  i n d e p e n -  

d e n t  o f  p r e s s u r e ,  b u t  h a s  d i f f e r e n t  v a l u e s  o n  t h e  t w o  

s i d e s  o f  t h e  f l a m e  f r o n t ) ;  t h i s  a s s u m p t i o n  i s  j u s t i f i e d  

i f  t h e  f l a m e  s p e e d  i s  m u c h  l o w e r  t h a n  t h e  s p e e d  o f  

s o u n d .  

T h e  v e l o c i t y  a n d  p r e s s u r e  p e r t u r b a t i o n s  a r e  g o v -  

e r n e d  b y  t h e  l i n e a r i z e d  c o n t i n u i t y  a n d  E u l e r  e q u a t i o n s  

0v' i ( 1 . 1 )  
0t ~- (v~  v '  = -- -?- V p ' ,  

d i v  v '  = 0 .  ( 1 . 2 )  
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These  equat ions apply both to the cold combust ib le  
gas and to the hot combust ion  p r o d u c t s - - r e g i o n s  1 and 
2, r e spec t i ve ly ,  in Fig .  1, which shows the pe r tu rbed  
spher ica l  f l ame .  At the f lame front  the pe r tu rba t ions  
must  sa t i s fy  conse rva t i on  of  m a s s  and momentum,  and 
also the r e l a t ion  be tween  the f l ame  speed and the p e r -  
tu rba t ions .  

2~ 
n 

2~ 

o\ 
~ J  

0 

r / /  
/ 

Fig.  2 

To solve this problem,  it is convenient  to use spherical  coordi-  

nates (Fig. 1) and to expand all perturbations in a series in terms of 
a complete orthogonal system of noninteracring spherical harmonics. 
For the flame to be unstable it is necessary that the amplitude of per- 
turbation divided by the instantaneous radius of the flame grow wifl~ 
time at least for one spherical harmonic. Therefore, without loss of 
generality, we may investigate the stability of the flame with respect 
m a perturbation in the form of a single spherical harmonic. 

In o r d e r  to s impl i fy  the ana lys i s ,  we shall  so lve  
the p r o b l e m  in two s t ages .  F i r s t ,  we shal l  inves t iga te  
the s tab i l i ty  of the f l ame  with r e s p e c t  to low s p h e r i -  
cal  h a r m o n i c s ,  in which c a s e  it  may  be a s sum ed  that  

the speed of p ropaga t ion  is  independent  of  the p e r t u r -  
bat ions  (Landau 's  assumpt ion) .  Subsequent ly  we shall  
i nves t iga t e  the c a s e  of h ighe r  h a r m o n i c s ,  us ing  M a r k -  
s t e in ' s  r e l a t ion  be tween  the f l ame  speed and the p e r -  
tu rba t ions  [3]. 

w Hydrodynamic  fo rmula t ion  of the unper tu rbed  
propaga t ion  of  a s p h e r i c a l  f l ame .  A s p h e r i c a l  f l ame ,  
which c a u s e s  the t h e r m a l  expans ion  of  the gas,  has  
the same  effec t  as  a gas  sou rce .  This  analogy can  be 
used to d e t e r m i n e  the ve loc i ty  and p r e s s u r e  d i s t r i b u -  
t ion ahead of  the unper tu rbed  f l ame  (in r eg ion  1). The 

ve loc i ty  potent ia l  in sou rce  flow is  

O ~b1~ (O-- s o u r c e  s t r eng th )  (2 1) 
4~r " " 

The equ iva len t  s o u r c e  s t reng th  of  the f l ame  can be 
ca lcu la ted  f r o m  the change of vo lume  of the gas p a s s -  
ing through the f l ame  f ront  in Lmit t ime ,  

(-~ - -  t )  = 4~v~St ~ (1 - - a ) .  (2 .2 )  0 4 ~ R ~ u n  

Consequent ly ,  the r ad ia l  v e l o c i t y  of the cold gas  is  

t2 
O~~ ( 1 - - a )  v2 s -ks-. (2.3) Vrl ~ = - ~  

The p r e s s u r e  d i s t r i bu t ion  in r eg ion  I can  be found by 

means  of the L a g r a n g e - C a u c h y  in t eg ra l .  This  y ie lds  

pl~ 'z 2 ( t _ _ a ) v @ [ l  (1--a) v p 4  Dts] , (2.4) 

In reg ion  2, which contains  hot combust ion  products ,  
the gas comes  to r e s t  (v~2 = 0) and the p r e s s u r e  is 
constant  and equal to 

p~~ = P0 + plvz"- (t -- ~)(3-- ~) (2.5) 
2 

(Equation (2.5) can be obtained f rom (2.4) and the con- 

dit ion for  the p r e s s u r e  discont inui ty  at the front .  ) 
w Stabil i ty ana lys i s  with r e s p e c t  to low spher ica l  

h a r m o n i c s .  Fol lowing Landau, we shall  a s sume  that 
the f lame speed is  constant .  This  solut ion will  be ap- 
p l icab le  to l a r g e - s c a l e  pe r tu rba t ions ,  for  which one 
may  neglec t  t he i r  e f fec t  on the s t r u c t u r e  of the f l ame .  

It should be noted that in the case of a spherical flame one should 
expect a power-law dependence of the perturbations on time, rather 
than an exponential dependence as in the case of a plane flame. This 
follows, as has been shown by Zel'doviehl from the following simple 
argument: From dimensional considerations it can be shown that the 
rate of change of the amplitude of the perturbations dA/dt must satisfy 
the relation 

d A  A u  n 
d---/- ~ -Y- " (3.1) 

In the case of  a plane f l ame  the wave leng th  of  the perturbation is 

X = const, and (3 .1 )  then yields an exponent ia l  re la t ion .  In the ease 

of a spherical flame the wavelength corresponding to a given spheri- 
cal harmonic grows linearly with time, and (3.1) then yields a power- 
law dependence of A on time. 

To solve  the p rob lem,  we mus t  speci fy  the l i n e a r -  
ized boundary  condi t ions  at the f l ame  f ront .  Unlike 
the boundary condi t ions  in [1], in the p r e s e n t  c a s e  the 
unper turbed  v a r i a b l e s  v~:, p~ a re  funct ions of the rad ia l  
coord ina te  r and the t ime  t. Thus,  at r = R(t) we have:  
c o n s e r v a t i o n  of m a s s  

0~, OVrj. ~ cqg 

conservation of normal momentum 

(3.2) 

0Pl~ E = P~' + Or p~'; (3.3) 

c o n s e r v a t i o n  of  tangent ia l  m o m e n t u m  (in the ~ = cons t  

plane)  

vol' q-  vrl~ as _ v ' (3.4) B O0 o2 ; 

c o n s e r v a t i o n  of t angent ia l  m o m e n t u m  (in the 0 = const  

plane) 

%d a e _ v  ' (3 .5 )  
V~L'@ R s i n 0  0(p ~2 ; 

cons tant  n o r m a l  speed of p ropaga t ion  of  the f l ame  

OVrl ~ 08 
v~,' q- -07- 8 - -  ~F = O. (3.6) 

In addi t ion to t h e s e  condi t ions  at the f l ame  front,  

the solut ion m u s t  sa t i s fy  the fol lowing obvious condi -  
t ions  fo r  the absence  of p e r t u r b a t i o n s  far  away f r o m  
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the f l ame  and fo r  the boundedness  of the p e r t u r b a t i o n s  
at  the c en t e r :  

Yrl ~, YOl', V~I', pl'--~0 as  r--+~ 
[v,2'l, ]vo~'], ]v~2'[, I P ( [ < ~  a s  r -~O.  ( 3 . 7 )  

Solving (1.1) and (1.2), we sha l l  use  d i f fe ren t  m e t h -  
ods in r eg ions  1 and 2. In r eg ion  1, conta in ing  the 
c o m b u s t i b l e  gas ,  we sha l l  use  the condi t ion  tha t  the 
p e r t u r b e d  flow is  a po ten t i a l  flow. Th i s  does  not  r e -  
s t r i c t  the  g e n e r a l i t y  of  the  so lu t ion - - the  p e r t u r b a t i o n s  
which a p p e a r  in  the  gas  a r e  d e t e r m i n e d  by  the p r o p e r -  
t i e s  of  the  f l a m e  s u r f a c e  and the p a r t i c l e s  in r eg ion  1 
a r e  not d i r e c t l y  a f fec ted  by  the p e r t u r b i n g  f o r c e s .  
Thus the  po ten t i a l  na tu r e  of the  flow i s  p r e s e r v e d  
(He lmho l t z ' s  t h e o r e m ) .  

In r eg ion  1 the  v e l o c i t y  po ten t i a l  r s a t i s f i e s  L a -  
p l a c e ' s  equat ion  

a ~ '  = 0. ( 3 .8 )  

To so lve  Eq. (3.8) i t  is  convenien t  to r e p l a c e  the co -  
o r d i n a t e s  r ,  0, ~, t by the  d i m e n s i o n l e s s  c o o r d i n a t e s  

= r /v2t  , 0, ~, ~- = In t .  The in t roduc t ion  of the  c o o r -  
d ina t e s  ~, "r i s  na tu ra l ,  in v iew of  the  fac t  tha t  the  
p r o p a g a t i o n  of  the  u n p e r t u r b e d  f l ame  i s  s e l f - s i m i l a r .  

The so lu t ion  of L a p l a e e ' s  equat ion in s p h e r i c a l  c o -  
o r d i n a t e s  can  be  r e p r e s e n t e d  by  a s e r i e s  of  t e r m s  of 
the form 

QI,~ ---- xI~'m~ ('t') sin me Pnm (Cos e) / ~'~+~, 
(3.9) 

,~,~ = ~ , ~  (-c) - ,  '~+~ cosmeP~ (cosO)/~ , 

w h e r e  m and n a r e  i n t e g e r s  and m < n. As  we sa id  in 
w we can  r e s t r i c t  ou r  a t t en t ion  to the  t e r m s  (3.9) 
c o r r e s p o n d i n g  to a s ing le  va lue  of  m and n. It i s  a l so  
su f f i c i en t  to c o n s i d e r  the  t e r m  con ta in ing  s in  m ~  only,  
s ince  the r e s u l t  fo r  the cos ine  t e r m  is  i d e n t i c a l .  

I n t roduc ing  for  conven ience  the  new funct ion f~ (z), 
def ined by  

~I?mn I (~) : V22e'r ('~), (3 .  10)  

we ob ta in  the  fo l lowing e x p r e s s i o n s  fo r  the  co mpone n t s  
of  the  p e r t u r b e d  v e l o c i t y  in r eg ion  1: 

vr / v3 = - -  (n + t) ]1 (X) ~(--n+2) sin me Pnm (cos 0), (3.11) 

v0~ / v~ = / 1  (x) V("§ sin me dPn '~ / dO, ( 3 . 1 2 )  

v~/v3=l~(~)m~-(~+Z)cosmePn'n(cosO)/s inO. (3.13) 

F r o m  the l i n e a r i z e d  C a u c h y - L a g r a n g e  i n t e g r a l ,  

p ~ "  &h' 
p--T - -  ~t Vrx~ = 

(3.14) 

we ob ta in  the  p r e s s u r e  p e r t u r b a t i o n  

~ '  = - -  ~-(~+') s in m e P ~  [ (n  + 2) /1  - -  

( 3 . 1 5 )  
,~t, ] 

Solving the p r o b l e m  in reg ion  2, which conta ins  the 
p r o d u c t s  of  combus t ion ,  we cannot  a s s u m e  po ten t ia l  
f low-- the  gas  e n t e r i n g  this  r eg ion  th rough  the f l ame  
f ront  b r i n g s  in v o r t i c i t y  p e r t u r b a t i o n s .  In th i s  r eg ion  
i t  i s  convenien t  to u se  L a n d a u ' s  method of so lu t ion .  

a! 

O a~ 

Fig. 3 

Taking  the d i v e r g e n c e  of both s ides  of (1.1), we find 
tha t  the  p r e s s u r e  p e r t u r b a t i o n  in r eg ion  2 s a t i s f i e s  
L a p l a e e ' s  equat ion .  Thus,  by  ana logy  with  o u r  s o l u -  
t ion  of  (3.8),  we take  one t e r m  of the s e r i e s  

~-~' = (I),~ 1 (~) ~ sin meP,d n (cos 0) (3.16) 
Ctplv2 ~ 

and a s s u m e ,  fo r  conven ience ,  tha t  the a r b i t r a r y  func-  
t ion  of t i m e  ~lmn(V ) i s  r e l a t e d  to a no the r  a r b i t r a r y  
funct ion f2(T) by the r e l a t i o n  

r  = al~ i -  ( 3 . 17 )  

To d e t e r m i n e  the componen t s  of  the  p e r t u r b e d  v e -  
l o c i t y  in r e g i o n  2 we so lve  (1.1),  t ak ing  into account  
(3.16), 

v~2 / v 3 = n s i n m ~ P J n [ ( n +  t)]a(~e ) +  ]~(v)~ ], (3.18) 
dPnra 

vo3' /v3=sinme--d6---[f3,  o(~e~)+]3(~)~-~], (3.19) 

v~3'/v2 = m cos m e P ~  [/s,r (~e') + ]~ (v) ~-1] / sin 0. (3.20) 

H e r e  ]a, ]3, 8, ]s,, a r e  a r b i t r a r y  funct ions  of the  a r g u -  
m e n t  }e ~'. T h e s e  func t ions  a r e  r e l a t e d  to each  o ther ,  
s i n c e  the c ompone n t s  of the  v e l o c i t y  p e r t u r b a t i o n  m u s t  
s a t i s f y  the  con t inu i ty  condi t ion  (1.2) .  Subs t i tu t ing  
( 3 . 1 8 ) - ( 3 . 2 0 )  into (1.2),  we find tha t  

l~,e = l~,,,, 
( 3 . 2 1 )  

ls.e = z d/a / dz + 218 = 013 / a~ + 213, z = ~e'. 

Thus ,  the  v e l o c i t y  p e r t u r b a t i o n s  a r e  

v~' / v~ = n sin mr [(n + i ) la -f- /2~-~] P~'~ , (3.22) 

v,3' / v~ = s in  me [13~ '~-~ + 01310"~ + 21a] dP,~ I dO, ( 3 . 2 3 )  
p m  . v~ '  / v~ = m cos me [/~n-t + 0]3 / 0z + 2/al ~ / sin 0. (3.24) 

F ina l l y ,  we def ine  the  f l a m e  f ron t  p e r t u r b a t i o n  

8 : v,t = ]~ (X) sin meP~ r~ (cosO). (3.25) 

To d e t e r m i n e  the  func t ions  f~, f2, f~, f~ we use  the  
b o u n d a r y  cond i t ions  ( 3 . 2 ) - ( 3 . 6 )  (with the  v a r i a b l e s  r,  
0, ~, t r e p l a c e d  by  ~, 0, ~, ~). Subs t i tu t ing  the  e x -  
p r e s s i o n s  fo r  the  v e l o c i t y  and p r e s s u r e  p e r t u r b a t i o n s  
in r e g i o n s  1 and 2, and the e x p r e s s i o n  fo r  the  f l ame  
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front per turba t ion  into these boundary  condit ions,  we 
find the following sys t em of equat ions with constant  
coeff ic ients :  

(n + t)]I -t- an/~ -~ an  (n "4- t ) /s  -b 

+ 3 ( l _ a ) A + (  1 ., ah --c~j ~ = 0, (3.26) 

dh [1 + a(n  + t)1/~ + -~-  + a ( n - - t ) A - -  

- -  :~ ~--~1~ -}- 2=(l--a)/~ = O, (3.27) 

d]a 
/ , - - A - -  2 / 3 - - - - ~  + ( l - - a ) / ,  = O, (3.28) 

dl~ = O. (3.29) ( n +  1)/~ + (3 - -2a ) /4  + ~ -  

function ofj~ and d f 4 / d r .  After some calcula t ions  we 
obtain 

anhd__.__y .4_ a .~_ .d14 %. b/4 = O, (3.32) 

2om ~ + 4n ,+ 3=n + am 
a =  n q-an .t-a ' 

b =  - - a ( l - - = ) n 3 " + ' 2 a n z  + a n  +3an--a2n'4-2":* (3.33) 
..... n - k e n + =  

The genera l  solut ion of (3.32) is  

]4 = Clt ~, + Ce t ' , ,  (3.34) 

1 

-I ~ gO 

Fig. 4 

In the following we shall investigate the time de- 

pendence of the flame front perturbation. Thus, in- 

stead of directly solving the system (3.26)-(3.29), 
we obtain an equation for the function f4 and relations 
which connect  al l  o ther  funct ions  with f4 and with i t s  
de r iva t ive  d f J d T .  The same  p rocedu re  wil l  be  used 
l a t e r  in the s tab i l i ty  ana lys i s  with r e spec t  to h igher  
spher ica l  h a r m o n i c s  (w where  we shal l  obta in  a 
s i m i l a r  sys t em of d i f fe ren t ia l  equat ions,  with the dif-  
f e rence  that the coeff ic ients  wil l  be funct ions of r .  

Adding the de r iva t ive  of (3.26) to (3.28) mul t ip l i ed  
by n(n - 1), and also sub t rac t ing  the same  der iva t ive  
f rom (3.28) mul t ip l ied  by (n - 1), we obta in  

a n ( n - - l ) f z + ( n - F  l )  d h _  dh o m ( n _ _ l ) / ~  + - 2 c  + a n - - ~  

el, 2 c m ( n _ _ t ) f a + a n ( n _ _ t ) ( t _ _ o O / 4 +  ( 3 . 3 0 )  + 2an - ~  - -  

. d~h = 0, + 3(t - - a ) @  + (1 - - a ) ~ s  

dh (n 2 -  l ) [ t - -  (n -t- t ) ~  - - a n ~ -  ~- an ( n - - I ) / 2 - -  

- -  a n ( n +  t) a l s4 -  a n ( n 2 - - 1 ) f a %  (3.31) 
dv i 

g14 , dZf4 - + - 3 ( t - - a ) ( n - - t ) / 4 + ( l  ~ a ) ( n ~ 4 ) - 2 7 ~ ( t - - c ~ )  d-~ = 0. 

Equat ions  (3.27), (3 .29) - (3 .31) ,  toge ther  with the 
equat ion obtained by d i f fe ren t ia t ing  (3.29), cons t i tu te  

a sy s t em of five inhomogeneous  l i n e a r  a lgebra ic  equa-  
t ions  for  

dlx ells ~ (n ~ 1) 
/1, -dT"' F2 = ~ h ,  

& = at ,  , t)I~, a't, - - ~  - -  ( n - -  d---- r . 

Each of these variables can be expressed as a Iinear 

where w i and 0) 2 are the roots of the characteristic 

equation 

0) s + aco -F b = 0,  (3.35) 

and C1, C 2 a re  cons tan ts  of in tegra t ion .  
One of the roots  of (3.35), co 1 (the one with the 

minus  s ign in  f ron t  of the square  root), i s  always 
negat ive  and does not r e p r e s e n t  ins tab i l i ty .  (In ad-  
dit ion to that, the solut ion co r r e spond ing  to this root  
is  not bounded for  r ~ 0 and, therefore ,  C 1 = 0.)  The 
o ther  root of (3.35), co 2 (the one with the plus  sign), 
can take on di f ferent  va lues  depending on the pa r t i cu -  
l a r  va lues  of n and oz cons idered ,  and i ts  s ign is  de-  
re t ra ined  by the sign of the free t e r m  in  (3.35). For  
a given a and suff ic ient ly  smal l  n (but always n > 1) 
the root  of the equat ion is  negat ive  (the f lame is  s ta-  
ble), and for l a rge  n the root is  pos i t ive  (the f lame 
is  uns table) .  The s tab i l i ty  l imi t ,  which can be found 
by equat ing b to zero,  i s  shown in  Fig.  2 (curve 1). 
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The values of n for which the flame is stable lie be- 

low the curve. It can be seen that as ~ approaches 
either zero or unity the region of stability increases 

without bounds. 

This is due to the fact that different degrees of thermal expansion 
during combustion correspond to different rates of growth of the per- 
turbations. Figure 3 shows the rate of growth of the perturbations for 
a plane flame as a function of c~. At the initial time this function 
coincides with the function representing the dependence of the char- 
acteristic frequency on a. (The figure shows the variable f?0 = -if~.a/  
/unk, where ~. is the characteristic frequency according to Landau's 
theory [1]. The variable f;0 represents the distance, relative to the 
combustion products, over which the flame must move in order that 
the perturbation amplitude would change by a factor of e. The same 
variable determines the onset of instability in the case of a spherical 
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f lame. )  It can be seen that f~0 vanishes at (x = 0 and at c~ = 1. The 
max imum value 

a ~ = g y  - 2 

corresponds to 

In accordance with Fig. 3, curve i of Fig.  2 has a min imum at a 
value of a which is close to a m .  

T h e  n a t u r e  o f  t h e  t i m e  c h a n g e  o f  t h e  p e r t u r b a t i o n  

a m p l i t u d e  o f  d i f f e r e n t  s p h e r i c a l  h a r m o n i c s  i s  s h o w n  

a l s o  i n  F i g .  4, w h i c h  r e p r e s e n t s  t h e  f u n c t i o n  co2(n) f o r  

v a r i o u s  c~. T h e  p o i n t s  o f  i n t e r s e c t i o n  o f  t h e  c u r v e s  

w i t h  t h e  a x i s  o f  a b s c i s s a s  d e t e r m i n e  t h e  c r i t i c a l  v a l -  

u e s  o f  t h e  h a r m o n i c s .  

T h u s ,  t h e  s o l u t i o n  o f  t h e  p r o b l e m  o f  t h e  s t a b i l i t y  

o f  p r o p a g a t i o n  o f  a s p h e r i c a l  f l a m e  i n  L a n d a u ' s  f o r -  

r n u l a t i o n  s h o w s  t h a t  i n s t a b i l i t i e s  o c c u r  o n l y  i n  t h e  

c a s e  o f  p e r t u r b a t i o n s  w i t h  s u f f i c i e n t l y  l a r g e  n,  i . e . ,  

p e r t u r b a t i o n s  w i t h  s h o r t  w a v e l e n g t h s ,  w h i c h ,  a c c o r d -  

i n g  to  L a n d a u ' s  s o l u t i o n  f o r  t h e  p l a n e  f l a m e ,  h a v e  t h e  

h i g h e s t  r a t e  o f  g r o w t h .  H o w e v e r ,  i t  i s  p r e c i s e l y  t h e s e  

s h o r t - w a v e  p e r t u r b a t i o n s  f o r  w h i c h  L a n d a u ' s  a p p r o a c h  

c e a s e s  t o  b e  v a l i d ,  s i n c e  i n  t h e  c a s e  o f  t h e s e  p e r t u r -  

b a t i o n s  one must take into account the effect of the 
transfer processes (viscosity, diffusion, thermal con- 
ductivity) and of the chemical kinetics, which may re- 
sult in a damping of the perturbations. 

w Stability analysis with respect to high spheri- 
cal harmonics. In order to account for the effect of 

chemical kinetics and transfer processes on the sta- 
bility of the flame in the case of perturbations corre- 
sponding to high spherical harmonics, when the wave- 
length is of the order of the flame front thickness, we 
shall use Markstein's assumption [3]. Markstein's 
assumption was that the over-all effect of transfer 
p r o c e s s e s  a n d  c h e m i c a l  M n e t i c s  o n  t h e  f l a m e  c a n  b e  

r e p r e s e n t e d  b y  a c o n s t a n t  w h i c h  r e l a t e s  t h e  v a r i a t i o n  

o f  t h e  n o r m a l  s p e e d  o f  t h e  f l a m e  w i t h  i t s  c u r v a t u r e :  

(u a n d  Un a r e  t h e  p e r t u r b e d  a n d  u n p e r t u r b e d  f l a m e  

s p e e d s ,  A i s  t h e  r a d i u s  o f  c u r v a t u r e  o f  t h e  f l a m e  f r o n t ,  

a n d  U i s  a c o n s t a n t ) .  

It should be noted that Markstein's approach is, essentially, the 
next approximation to Landau's solution, and this approximation is 
l inear.  Equation (4.1) represents a series expansion of the flame speed 
in terms of a smalt  parameter  p/A, which takes into account the 
structure of the f lame.  From dimensional considerations, the constant 
p, which has the dimension of length, must be proportional to the 
f lame front thickness, i . e . ,  to p = #ow./u n, where ~r is the thermal  
diffusivity of the gas and P0 is a dimensionless factor, which was left 
undetermined in [3]. From general considerations it is clear that this 
factor must be a function of the Prandtl and Lewis numbers, the ther- 
mal  expansion parameter  a,  and a dimensionless parameter which 
characterizes the temperature dependence of the rate of the chemical  
reaction. ( In a first approximation it may be assumed that for large 
activation energies the rate of the chemica l  reaction in the f lame de-  
pends only on the temperature in the reaction zone. ) In [10] this fac-  
tor was calculated on the basis of the thermal-diffusion formulation 

of the problem, disregarding the hydrodynamics. The formula obtained 
for ~0 contained the large number E/2RT b (E is the activation energy 
of the chemical  reaction, T b is the combustion temperature, and R is 
the gas constant); therefore the factor ]a 0 can reach values of ~ e  order 
10-20.  
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The condition for the applicability of the linear approximation 
p/A << 1 imposes a restriction on the min imum perturbation wave- 
length for which the present formulation is meaningful.  One cannot 
consider perturbation wavelengths which are too small  (n too high), 
corresponding to such large curvatures that ~/A > 1. (Note, that due 
to the increase of the wavelength corresponding to a given spherical 
harmonic, at large values of t ime we may consider large values of n. ) 
Moreover, we cannot consider very low values of the radius R, such 
that g/R > 1, as in that case the speed of propagation of the unper- 
turbed front is not constant. 

The first restriction makes it impossible m determine the wave~ 
length for which perturbations decay instead of growing. The linear 
correction cannot be used to find the stability l imit .  If we regard 
Landau's solution as the leading term of an asymptotic series for a 

perturbation Reynolds number tending to infinity, then the introduction 
of correction of the order ~/A ~ l / f R o  should yield a correction for 
the frequency f~, which characterizes the t ime variation of the pertur- 
bations, of the form 

Thus, Markstein's solution consists in determining the specific 
form of the function F(c0. Incidentally, this point has not been m en -  
tioned in [3], so that the expression for the frequency given there con- 
tains not only terms linear in p/A, but also higher order terms.  Carry- 
ing out the calculations, one obtains the formula for F(c~) 

F ( a ) = ( g ' e § 2 4 7  f ) / ( l  + a - - ~ - -  l / a  + a 2 - - ~ ; .  (4.3) 

The solution for the plane flame (4.2) shows a tendency for a va r i -  
ation of the characteristic frequency with decreasing perturbation wave-  
length. In order to make the frequency change sign and, consequently, 
to obtain a damping of the perturbations, one must extrapolate (4.2) 
to the range of wavelengths where /~/A .~ 1. The determination of the 
stability l imit by extrapolation of a linear correction constitutes a dif- 
ficulty which is common to all existing studies of the problem. 

The second res t r ic t ion- the  independence of the speed of propaga- 
tion of the unperturbed f lame of the f lame front curva ture- imposes  a 
restriction on the min imum time for which the present formulation be- 
comes meaningful .  Taking into account that the curvature of a spheri- 
cal surface is 2/R, we obtain from the condition 2p/R < )/ << 1 the 
bound v2t/P > 2/)/. 

To carry out the stability analysis of the present 

problem we must change the boundary conditions (3.2)- 

(3.6): instead of (3.3) we must use the condition 

_~_ aPl ~ Pl' - - ~  ~ ~ P2' + 2fhv2 2~ ( i  - - a ) - - ~ A '  ( 4 . 4 )  
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and instead of (3 .6 )we  mus t  use 

�9 ov~t  ~ o8  ~' ( 4 . 5 )  v,, + - ~ F -  8 - -  ~-----  - -  av2 -X-. 

Since we a re  in te res ted  he re  in la rge  n, for which the 
spher ica l  f lame is uns table  accord ing  to Landau 's  for -  
mula t ion  (n > 6, Fig.  2), we express  the rad ius  of 
cu rva tu r e  A of the spher ica l  ha rmon ic  in the form 

s,, (n + i) ~n (n + t) (4.6) 
A "~" R 2 ~ v 2 ~  

Taking account  of the boundary  condi t ions  (3.2), 
(4.4), (3.4), (3.5), (4.5), and (3.7), we can obtain 
a sy s t em of equat ions  for the funct ions f l ,  f2, f3, f~ 
of the s ame  form as (3 .26) - (3 .29) .  Only some of the 
coeff ic ients  wil l  be funct ions of t ime:  the coeff icient  
off4 in (3.27) wil l  have an addit ional  t e r m  2~(1 - 
- ~)#/A,  and the coeff ic ient  off~ in (3.29) will  have 
an addi t ional  t e r m  - ~ / A .  Reducing the sys t em to a 
s ingle  equat ion by the method used in w and taking 
into account  that 0 (~t / A) / 0~ = - -  (~t / A), we obtain the 
equation 

d~h..,Ld~ 2 - -  (a + ~ImOe-*~/'d~dl' + (b + ~@~ e-'~)/, = O, (4.7) 

where  

a 0 =  o t n ( n +  l ) ( 2 n +  l ) / ( n + a n + c r  

(4.8) 
b 0 =  a 0 ( n +  t). 

Although n is  now cons idered  to be large ,  we can-  
not in t roduce  any s impl i f i ca t ions  in the coeff ic ient  of 
(4.7), s ince the va r i ab l e  c~ can be smal l  (ha ~ 1). 
Moreover ,  we cons ide r  the las t  coeff ic ient  in the equa-  
t ion n e a r  those va lues  of n and ~ for which the coeff i-  
c ien t  van i shes .  

We seek a solut ion of (4.7) in the fo rm of a sum of 
two t e r m s .  One t e r m  is  the p a r t i c u l a r  solut ion ob-  
ta ined without t ak ing  into account  the effect of the c u r -  
va tu re  of the f lame f ront  on the speed, as in  Landau ' s  
fo rmula t ion .  The second t e r m  is  a c o r r e c t i o n  which 
takes  account  of this  effect, in the same way as in  the 
p lane  f lame case  [cf. (4.2)]. To find the c o r r e c t i o n  
t e r m  it i s  conven ien t  to in t roduce  the new funct ion U, 
which reduces  (4.7) to the fo rm 

dV u2 ( ~ ) dz + + a +  e -~ U + b +  I~b~ 
~2 2 

(U t dh~ 
= 3 Y - ~ ] "  

(4.9) 

The solut ion of the p r o b l e m  in  Landau ' s  approx ima t ion  
is  

r r  t all4 
I~ = 0 ,  ~ = ~ - ~ -  = co = c o n s t .  

(F rom here  on we supp re s s  the s u b s c r i p t  on c0. ) The 
so lu t ion  we now seek is  

u = o [1 + x (*)l.  

(Here • is a s m a l l  co r r ec t i on  factor .  ) 

(4. lO) 

Substi tut ing (4.10) into (4.9) and neglect ing quadrat ic  
t e r m s ,  we obtain 

-JudX + (2o + a)X + (omo + b0)P.olva e-" = 0. (4.11) 

The solution of (4.11) is 

X = K oxp [--  (2o + a) ~l V. (oao 4- bo) 
v~o (2o + a - -  t) 

e-* (4.12) 

where  K is  an a r b i t r a r y  cons tant .  The condit ion g = 0, 
• = 0 yields K = 0. Thus,  the solut ion of the p rob lem 
in Ma r ks t e i n ' s  approximat ion  is 

(~_) p. (oao +bo} (4.13) 14 = const ~ oxp v~t (2~0 + a--  1) " 

It can be eas i ly  seen that  the dependence of f4 on t 
for w > 0 (i. e . ,  for  the case  when the solution accord -  
ing to Landau 's  approximat ion  p red ic t s  ins tabi l i ty)  
has a m i n i m u m  at 

v2t a o ( ~ + n + t )  (4.14) 
i ~ ==~0(2o+a--l)" 

Such a dependence could be expected on physical grounds. At 
small values of t the wavelength of the perturbations on the surface 
of the flame is small, and the stabilizing influence of the curvature 
on the speed of propagation is effective. Therefore the initial per- 
turbations decay. When the dimensions of the flame increase (for 
large values of t) the dimensions of the perturbations also increase, 
yielding the instability predicted by Landau-the perturbations grow 
with time. 

For  d i f ferent  n the m i n i m u m  value of the re la t ive  
ampl i tude  c o r r e sponds  to di f ferent  t i m e s .  However,  
for  a given ~ there  exis ts  a value of the o r d e r  of the 
spher ica l  ha rmon ic  for which the m i n i m u m  is reached 
f a s t e r  than for o ther  o r d e r s  (n = n , ) .  The value of n ,  
can be eas i ly  found f rom the graphica l  r ep re sen t a t i on  
of (4.14). 

Figure 5 represents the relative amplitude of the 
perturbations as a function of time for ~ = 0.2 and 

various values of n in the coordinates Ig f4 and ig (v2t/ 
/~) = lg q. The straight lines in Fig. 5 represent the 
solution based on Landau's approximation. The broken 
line goes through the minima of the curves. For the 
value of ~ used in this figure n, = 12. 

The function n,(~) is represented by curve 2 in 

Fig. 2. This curve lies inside the region bounded by 

curve I. 
Thus, there emerges the following picture of the 

development of the relative perturbations of the flame 
sur face :  At f i r s t  p e r t u r b a t i o n s  of a l l  wavelengths  de-  
c a y - t h e  r e l a t i ve  ampl i tude  d e c r e a s e s .  The di f ferent  
h a r m o n i c s  decay at d i f fe rent  r a t e s .  Af ter  a c e r t a i n  
t ime  q ,  = v2t . /~ ,  the ampl i tude  of one of the h a r m o n -  
ics  (n = n . )  p a s s e s  through a m i n i m u m  and beg ins  to 
grow. Subsequent ly  the ne ighbor ing  ha rmon ic  s begin 
to grow, and an ins t ab i l i ty  develops.  

It is  convenien t  to define the onset  of ins tab i l i ty  of 
a sphe r i ca l  f lame by means  of the t ime  q , ,  which de-  
pends only on the t h e r m a l  expans ion  p a r a m e t e r  a .  F ig -  
u re  6 shows q ,  as  a funct ion of ~ accord ing  to (4.14). 



JOURNAL OF APP LIED MECHANICS AND TECHNICAL PHYSICS 49 

F o r  m o s t  f l ames ,  fo r  which ~ = 0 . 0 2 - 0 . 2 ,  the c o r r e -  
sponding value  i s  q ,  = 50-60 .  

w Discuss ion  of  r e s u l t s  and c o m p a r i s o n  with ex -  
p e r i m e n t a l  data.  The s tab i l i ty  of  propagat ion  of a 
sphe r i ca l  f l ame  was f i r s t  inves t iga ted  e x p e r i m e n t a l l y  
by Ze l ' dov ich  and Roz lovsk i i  [5]. Subsequently,  in-  
s tabi i i ty  phenomena w e r e  inves t iga ted  in m o r e  deta i l  

by Shchelkin and T r o s h c h i n  and t h e i r  c o l l a b o r a t o r s  
[6 -8] .  

In a l l  t he se  s tudies  the onse t  of ins tab i l i ty  is  r e p -  

r e sen ted  by a c r i t i c a l  va lue  of  the Reynolds number ,  
based  on the n o r m a l  speed of the f lame,  the rad ius  
of the f l ame  sphere ,  and the v i scos i ty  of the cold c o m -  
bus t ib le  m i x t u r e .  It can be ea s i l y  seen  that  the Rey-  
nolds number  thus defined is  p ropor t iona l  to a d i m e n -  
s i o n l e s s  t i m e  q: 

unR N R e = - - ~ - - = - - ~  q (P is the P rand t l  number) .  (5.1) 

In the e x p e r i m e n t s  it  is diff icul t  to es tabl i~h at 
what va lue  of the f l ame  rad ius  one of the h a r m o n i c s  
begins  to grow.  Usual ly  one can o b s e r v e  only such 
s ta tes  in which the pe r t u rba t i on  of  the su r face  is  suf -  
f i c i en t ly  developed.  In [5], for  ins tance ,  the onse t  of 
ins tab i l i ty  was  defined by the t r ans i t i on  f rom c o m b u s -  
t ion to detonat ion,  i .  e~, by a s ta te  of  high tu rbu lence .  
The c o r r e s p o n d i n g  v a l u e s  of  the c r i t i c a l  Reynolds  n u m -  
b e r  w e r e  high: 10~-106. In [6-8]  the sphe r i ca l  f l ame  
was  obse lwed pho tograph ica l ly .  The photographs  w e r e  
used to d e t e r m i n e  the t i m e  dependence  of the absolute  
va lue  of the su r f ace  pe r tu rba t ion .  The  onse t  of i n s t a -  
b i l i ty  was  defined as the t i m e  obtained by l i n e a r  ex -  
t r apo la t ion  of th is  dependence  to z e r o  pe r tu rba t ion .  
The c r i t i c a l  Reynolds  n u m b e r s  d e t e r m i n e d  by this 
method w e r e  s m a l l e r  by one o r d e r  of magni tude  (~104). 

However ,  in [6 -8]  the d i f fe ren t  r a t e s  of growqch of di f -  
f e r en t  p e r t u r b a t i o n s  (di f ferent  n) w e r e  neg lec ted ,  
which m a y  lead to o v e r e s t i m a t e d  Reynolds  n u m b e r s .  

R e g a r d l e s s  of the p a r t i c u l a r  defini t ion,  the va lues  
of  the c r i t i c a l  Reynolds  n u m b e r  obtained e x p e r i m e n t a l -  

ly w e r e  in sharp  d i s a g r e e m e n t  with the p r ed i c t i ons  r e -  
ga rd ing  the ins tab i l i ty  of a plane f l ame  which w e r e  

based  on Landau ' s  theory .  T h e s e  p r ed i c t i ons  d i s r e -  
garded,  however ,  the spec i f ic  c h a r a c t e r i s t i c s  of  a 
s p h e r i c a l  f l ame .  The  p r e s e n t  r e s u l t s  show that  in the 
case  of  a s p h e r i c a l  f l ame  the va lue  of  the c r i t i c a l  Rey-  

nolds  n u m b e r  can  be much h i g h e r  than in the plane 
c a s e .  We shal l  i l l u s t r a t e  th is  r e s u l t  by m e a n s  of a 

n u m e r i c a l  example .  
Cons ide r ,  f o r  example ,  a f l ame  with a t h e r m a l  ex -  

pans ion  p a r a m e t e r  oz = 0.2o This  c o r r e s p o n d s  to a 

c r i t i c a l  t i m e  q .  ~ 60 (Fig.  6). A s s u m i n g  ~0 = 10, P = 
= 1, we obtain  the r e s u l t  that  the c r i t i c a l  Reynolds  
n u m b e r  fo r  the h a r m o n i c  with n = n .  is ~600, i . e . ,  
two o r d e r s  of magni tude  l a r g e r  than unity.  Now let  
us a s s u m e  that  the Reynolds  n u m b e r  d e t e r m i n e d  ex -  

p e r i m e n t a l l y  i s  not this  c r i t i c a l  Reynolds  number ,  

but a Reynolds  n u m b e r  c o r r e s p o n d i n g  to the t i m e  at  
which the p e r t u r b a t i o n s  at the f l ame  f ron t  r e a c h  t h e i r  

in i t i a l  va lue s .  Assume ,  fo r  example ,  that  the in i t i a l  

pe r tu rba t ions  (caused by the spark,  say) or ig ina ted  at 
q = q0 = 40. (This va lue  of  q can be  r e g a r d e d  as the 
in i t ia l  t i m e  a f t e r  which ou r  o r ig ina l  a s sumpt ions  r e -  
gard ing  the cons tancy  of  the speed of the unper turbed 
f l ame  hold.  F o r  a v i s c o s i t y  v 1 = 0.1 c m 2 / s e c  and a 
f l ame  speed u n = 100 c m / s e c ,  the f l ame  rad ius  at 
q0 = 40 is  R 0 = 0 .4  cm,  which is  a r easonab le  value  
fo r  a f l ame  a f t e r  igni t ion.  ) Accord ing  to Fig.  5, the 
pe r tu rba t ion  with n = n .  wi l l  r each  i ts  in i t ia l  value at 
q ~ 100, and the c o r r e s p o n d i n g  Reynolds n u m b e r  is  
~1430. 

Although the n u m e r i c a l  example  d e m o n s t r a t e s  the 
cons ide r ab l e  i n c r e a s e  in the c r i t i c a l  Reynolds number  
of a sphe r i ca l  f l ame  as c o m p a r e d  with a p lane  f lame,  
due to the spec i f i c  c h a r a c t e r i s t i c s  of the sphe r i ca l  
f lame,  th is  is  not suf f ic ien t  to expla in  the e x p e r i m e n -  
ta l  r e su l t s  in full .  It can be a s sum ed  that  the i n c r e a s e  
in the Reynolds number  is a lso  due to non l inea r  s t a -  
b i l i z ing  e f fec t s .  One such ef fec t  has  been  d i scussed  
by Z e l ' d o v i c h  [11]. 

It is interesting to compare qualitatively the experimental data 
with the theoretical results. The photographs of the flames shown in 
[6-8] indicate that the instability of a spherical flame develops in 
the following way: First there appear large-scale perturbations, due 
to the perturbing effect of the spark, and these perturbations decay as 
the flame grows. After a certain time there appear perturbations on a 
much smaller scale than the initial ones, and these perturbations grow, 
reach considerably large dimensions, and form cellular flames, which 
eventually become turbulent. It should be noted that in the case of 
fast-burning flames the scale of the "secondary" perturbations is small- 
er, and these develop faster. The growth of the instability is strongly 
affected by the composition of the combustible mixture and, in par- 
ticular, by the ratio between the thermal diffusivity and the mass dif- 
fusivity of the component which controls the combustion reaction. The 
onset of instability occurs sooner as the pressure increases. 

These experimental results are in qualitative agreement with the- 
oretical results. (For example, the effect of the composition of the 
combustible gas on the stability can be explained by a variation of 
the value of Marksteia's constant [10], the effect of the pressure can 
be seen fl'om the definition of the Reynolds number, the effect of file 
combustion temperature can be seen in Fig. 2, etc.) 

In conclus ion ,  we would l ike to e x p r e s s  our  g r a t i -  
rude to Ya. B. ZePdovich  fo r  sugges t ing  the p r o b l e m  

and fo r  h i s  c o n s t r u c t i v e  c r i t i c i s m ,  and to G. I. B a r e n -  
blair,  O. I. Leipunski i ,  and Ya. K. T r o s h c h i n  for  

t h e i r  va luab le  d i s c u s s i o n s .  
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