JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 43

ON THE STABILITY OF PROPAGATION OF SPHERICAL FLAMES
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The stability of propagation of a plane flame in the quasi-steady
regime has been investigated by L. D. Landau [1, 2], who treated
the laminar flame as a discontinuity of density, temperature, pres-
sure, and velocity propagating through the gas at a constant speed.
The result was unexpected: the flame was predicted to be absolutely
unstable. The disagreement between this theoretical prediction and
known experimental data has led to several theoretical and experimen-
tal studies [3~8].

The theoretical studies (reviewed in [4]) considered the stabilizing
effect of transport processes (viscosity, thermal conductivity, diffusion)
for the case in which the wavelength of the perturbations was of the
order of the flame front thickness. In this case the flame front cannot
be treated as an infinitesimally thin hydrodynamic discontinuity, asin
Landau’s work, and the effect of the perturbations on the structure and
speed of the flame front must be taken into account. The best known
of these studies is that of Markstein [3], who accounted for the transfer
processes by introducing a constant which related the change of the
speed of the flame front to its curvature. (It should be noted that long
before Markstein's work [3], Zel'dovich [9] had noted the effect of the
ratio between the thermal and mass diffusivities of the component
which controls the chemical reaction on the stability of the flame.)

The studies reported in [3, 4] did not explain the disagreement
between Landau's theory and experiment. The critical Reynolds num-
bers characterizing the onset of instability which were obtained in
these studies were of order unity, whereas experimentally one finds
stable flames at much higher Reynolds numbers.

The experimental studies reported in [5~8] attempted to observe
the instability predicted by Landau and to measure the critical condi-
tions. In view of the fact that experiments involving flame propaga-
tion in tubes or combustion in various burners are complicated by sec-
ondary effects (turbulence, heat transfer, etc.) which are neglected in
the theory, it is more convenient to study a spherical flame propaga-
ting through a combustible gas. Such experiments, carried out first
by Zel'dovich and Rozlovskii [8], and later by Shchelkin, Troshchin,
and their collaborators [6—-8], showed that the critical Reynolds num-
bers are of order 10%-105,

However, these studies neglected the fact that in the case of a
spherical flame the instability is affected by the increase of flame
front surface area. In particular, the instability must be defined in a
different way than in the plane case, since a deformation of the flame
front and a change of its velocity of propagation can be observed only
if the amplitude of the perturbation increases faster than the dimen-
sions of the flame. In this paper the criterion for instability is the in-
crease with time of the relative amplitude of perturbation of the flame
surface (the ratio of the amplitude and the instantaneous radius). Our
analysis of the stability of propagation of a spherical flame is based
on the hydrodynamic formulation of Landau and Markstein, We show
that the flame is stable with respect to the low spherical harmonics of
the perturbations, because the rate of growth of these harmonics is
lower than the speed of propagation of the flame. Asregards higher
harmonics, we find that the curvature of the perturbations has a sig-
nificant effect on the speed of propagation of the flame (this was tak-
en into account in Markstein’s approximation [3]), which stabilizes
the flame up to a certain point in time, This time determines the
critical Reynolds number.

It will be shown that the critical Reynolds number can reach a
relarively high value, 103—104, if one interprets Markstein's constant
as a parameter strongly dependent on the activation energy of the
chemical reaction in the flame. This interpretation gives better agree-
ment with experimental results [5~8]. The theoretical model is also

in good qualitative agreement with experimental observations of the
development of the perturbations.
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NOTATION

r, 8, ¢—spherical coordinates, t—time, up—normal speed of
propagation of the flame, o—~ratio of densities of hot and cold gas,
€, 0, ¢—dimensionless spherical coordinates, r—dimensionless time,
vy, Vg, Vg—velocity components in spherical coordinates, p—pres-
sure, p—density, ¥—velocity potential, ®—source strength, R—flame
radius, A~perturbation amplitude, A—perturbation wavelength, k—
wave number, &—perturbation of flame surface, {- dimensionless
perturbation of flame surface, A-—radius of curvature, n—index of
spherical harmonic, m—periodicity parameter with respect to the
angle ¢, fj—unknown functions (i =1, 2, 3, 4), wj~roots of char-
acteristic equation for the spherical flame, Qj—roots of the charac-
teristic equation for the plane flame, p—Markstein's constant,
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Superscripts: °—unperturbed variable; ‘—perturbation. Subscripts:
1, 2—cold and hot gas, respectively; O—infinity (r — ).

§1. Formulation of the problem, Our analysis of
the stability of a spherical flame propagating through
a space filled with combustible gas will be based on
the assumptions of Landau and Markstein [1-3]. We
shall regard the flame front as a surface of discon-
tinuity of velocity, density, temperature, and pres-
sure which propagates through the gas with a speed
which depends, in general, on the curvature of the
surface. We assume that the flame propagates through
an ideal incompressible gas (the density is indepen-
dent of pressure, but has different values on the two
sides of the flame front); this assumption is justified
if the flame speed is much lower than the speed of
sound.

The velocity and pressure perturbations are gov-
erned by the linearized continuity and Euler equations

av, 0, 7 1 ’
5 T VY =——vr, .1

divv' =0. (1.2)
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These equations apply both to the cold combustible

gas and to the hot combustion products—regions 1 and
2, respectively, in Fig, 1, which shows the perturbed
spherical flame. At the flame front the perturbations
must satisfy conservation of mass and momentum, and
also the relation between the flame speed and the per-
turbations.
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Fig. 2

To solve this problem, it is convenient to use spherical coordi-

nates (Fig. 1) and to expand all perturbations in a series in terms of

a complete orthogonal system of noninteracting spherical harmonics.
For the flame to be unstable it is necessary that the amplitude of per-
turbation divided by the instantaneous radius of the flame grow with
time at least for one spherical harmonic. Therefore, without loss of
generality, we may investigate the stability of the flame with respect
to a perturbation in the form of a single spherical harmonic.

In order to simplify the analysis, we shall solve
the problem in two stages. First, we shall investigate
the stability of the flame with respect to low spheri~
cal harmonics, in which case it may be assumed that
the speed of propagation is independent of the pertur-
bations (Landau's assumption). Subsequently we shall
investigate the case of higher harmonies, using Mark-
stein's relation between the flame speed and the per-
turbations [3].

§2. Hydrodynamic formulation of the unperturbed
propagation of a spherical flame. A spherical flame,
which causes the thermal expansion of the gas, has
the same effect as a gas source. This analogy can be
used to determine the velocity and pressure distribu-
tion ahead of the unperturbed flame (in region 1). The
velocity potential in source flow is

D
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(® — source strength)., (2.1)

The equivalent source strength of the flame can be
calculated from the change of volume of the gas pass-
ing through the flame front in unit time,

O = dnftun (5 —1) = dnodt (1 —a).  @.2)

Consequently, the radial velocity of the cold gas is
3 z
—a) vy - - (2.3)
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The pressure distribution in region 1 can be found hy
means of the Lagrange-Cauchy integral. This yields
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In region 2, which contains hot combustion products,
the gas comes fo rest (vy, = 0) and the pressure is
constant and equal to

P = po+ pros? G*_L)Z(B:‘ﬂ. (2.5)
(Equation (2.5) can be obtained from (2.4) and the con-
dition for the pressure discontinuity at the front.)

§3, Stability analysis with respect to low spherical
harmonics. Following Landau, we shall assume that
the flame speed is constant, This solution will be ap-
plicable to large-scale perturbations, for which one
may neglect their effect on the structure of the flame,

It should be noted that in the case of a spherical flame one should
expect a power-law dependence of the perturbations on time, rather
than an exponential dependence as in the case of a plane flame. This
follows, as has been shown by Zel'dovich, from the following simple
argument: From dimensional considerations it can be shown that the
rate of change of the amplitude of the perrurbations dA /dt must satisfy
the relation
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In the case of a plane flame the wavelength of the perturbation is

A = const, and (3.1) then yields an exponential relation, In the case
of a spherical flame the wavelength corresponding to a given spheri-
cal harmonic grows linearly with time, and (3.1) then yields a power-
law dependence of A on time,

To solve the problem, we must specify the linear-
ized boundary conditions at the flame front. Unlike
the boundary conditions in [1], in the present case the
unperturbed variables v§, p° are functions of the radial
coordinate r and the time t. Thus, at r = R(t) we have:
conservation of mass

o
’ Jg v,

de
R a:a(v,z'_5t~>; (3.2)
conservation of normal momentum
P+ B e = py (3.3)
1 7 or 2 H .

conservation of tangential momentum (in the ¢ = const
plane)

) v, .° Oe s :
Vo +~——'}{ %:Uez; (3'4)
conservation of tangential momentum (in the 6 = const
plane)

’ vrlc 68 ’
Vo' Rsme dg = U (3.5)
constant normal speed of propagation of the flame

, . 0v° de 0
o gt =

(3.6)
In addition to these conditions at the flame front,

the solution must satisfy the following obvious condi-

tions for the absence of perturbations far away from
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the flame and for the boundedness of the perturbations
at the center:
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Solving (1.1) and (1.2), we shall use different meth-
ods in regions 1 and 2. In region 1, containing the
combustible gas, we shall use the condition that the
perturbed flow is a potential flow. This does not re-
strict the generality of the solution—the perturbations
which appear in the gas are determined by the proper-
ties of the flame surface and the particles in region 1
are not directly affected by the perturbing forces.
Thus the potential nature of the flow is preserved
(Helmholiz's theorem).

In region 1 the velocity potential ¢{ satisfies La-
place's equation

Apy = 0. (3.8)

To solve Eq. (3.8) it is convenient to replace the co-
ordinates r, 6, ¢, t by the dimensionless coordinates
£=r1/vet, 8, ¢, T=Int. The introduction of the coor-
dinates £, 7is natural, in view of the fact that the
propagation of the unperturbed flame is self-similar.

The solution of Laplace's equation in spherical co-
ordinates can be represented by a series of terms of
the form

12 = ¥k (1) sin mg Pam (cos €) /BT,
Y1 43 P ( \ (3.9)

Pra = U (T) cosmp Py (cos B) / g

where m and n are integers and m < n, As we said in
81, we can restrict our attention to the terms (3.9)
corresponding to a single value of m and n. It is also
sufficient to consider the term confaining sin me only,
since the result for the cosine term is identical,

Introducing for convenience the new function fi(7),
defined by

¥, LT = valefy (1), (3.10)

we obtain the following expressions for the components
of the perturbed velocity in region 1:

ve [ 0= —(n+ 1) £ (V)T sin mg P,m (cos ), (3. 11)

Ve [ Vs = f (V) E P sin mo dP,™ ] d8,
Ver [ D2 = f1 (¥) mE ™ cos m P,™ (cos 6) /sin 8,

(3.12)
(3.13)

From the linearized Cauchy-Lagrange integral,

‘% = T Unln =
(3.14)
. A SR
we obtain the pressure perturbation
= — 5™ sinmgPym[(n +2) hi—
(3.15)

(1-—01)("*?*1) h4+ dh]

Solving the problem in region 2, which contains the
products of combustion, we cannot assume potential
flow—the gas entering this region through the flame
front brings in vorticity perturbations. In this region
it is convenient to use Landau's method of solution,
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Fig. 3

Taking the divergence of both sides of (1.1), we find
that the pressure perturbation in region 2 satisfies
Laplace's equation. Thus, by analogy with our solu-
tion of (3.8), we take one term of the series

P @2 (t) " sin m@P,™ (cos 6)

apyvgt

(3.16)

and assume, for convenience, that the arbitrary func-
tion of time ®}ypu(T) is related to another arbitrary
function f»(7) by the relation

Oia ()= L2 (n—1) s, (3.17)
To determine the components of the perturbed ve~

loeity in region 2 we solve (1.1), taking into account
(3.16),

Vg’ [ 99 = nsinmePy™ [(n + 1) £ Ge) + o (METT],  (3.18)
dP,m .
veg’ [ vy = sinme ——“dg [fa, 0 (8€%) + fa (D) E™ 7L, (3.19)
Ves' | vz = m cos mQP™ [f5,, (B€%) 4 f2(T) "] /sin B, (3,20)
Here fs, 56, fare are arbitrary functions of the argu-
ment £e7. These functions are related to each other,
since the components of the velocity perturbation must

satisfy the continuity condition (1.2). Substituting
(3.18)—(3.20) into (1.2), we find that

fs,o = fs.qn
(3.21)
fao = zdfs [ dz + 2fa 8fs ] 0 + 2f5, z = Eet.
Thus, the velocity perturbations are
veg’ foa =nsinmy [(n+ 1) fs -+ fo ] Pa™ (3.22)
Vey' [ 0g = Sinmp [fo2" 7 - 0fs [ 0T + 251 AP [dB, (3.23)

Voa' [ Vg = mcos m@ [fof" ™ - 8fs/ 0T + 2fs] Pa" /8in 6, (3.24)

Finally, we define the flame front perturbation

™ (cos ). {3.25)

L= g = fa(¥)sin mpPy

To determine the functions fi, f3, f3, f4 we use the

boundary conditions (3.2)—(3.6) (with the variables r,
8, ¢, t replaced by &, 9, ¢, 7). Substituting the ex~

pressions for the velocity and pressure perturbations
in regions 1 and 2, and the expression for the flame
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front perturbation into these boundary conditions, we
find the following system of equations with constant
coefficients:

(n+1)fi+onfp+an(n+1)f3 +

3t —a)fut (1 —a)- T =0, (3. 26)
M+am+Dlf+ 2 +a(n—1)f2
a%ii+2a(1—a)f4=0, (3.27)
h—f—2f— B L 1 —a)=0, (3.28)
(nt A+ (3-2¢)f4+d" (3.29)
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In the following we shall investigate the time de-
pendence of the flame front perturbation. Thus, in-
stead of directly solving the system (3.26)—(3.29),
we obtain an equation for the function f, and relations
which connect all other functions with f; and with its
derivative dfy/dr. The same procedure will be used
later in the stability analysis with respect to higher
spherical harmonics (§4), where we shall obfain a
similar system of differential equations, with the dif-
ference that the coefficients will be functions of 7.

Adding the derivative of (3.26) to (3.28) multiplied
by n(n ~ 1), and also subtracting the same derivative
from (3.28) multiplied by (n — 1), we obtain

dfl

an(n—1)fi-+ (n+ 1) 2 fan T _an(n—1) 7o+
+ 2an —2> di“ Zan(n-—i)h+cen(n-—1)(1——cc)f4+(3'30)
+3(t—o) 2 L ()Pl 0,

(1) i (e + )P —an Pt an (n—1) fo—

—ann 1) Bt an e — 1) ot @39
+3(1—a)(n—1) fo k(1= o) (0 — &) L — (1 —a) T = 0

Equations (3.27), (3.29)—(3.31), together with the
equation obtained by differentiating (3.29), constitute
a system of five inhomogeneous linear algebraic equa-
tions for

fa %’5, Fa=SL—(n—1)1s,

Fo= e (n—tyfy, it

drt ©

Each of these variables can be expressed as a linear

function of f; and df;/dr. After some calculations we
obtain

&y df4
d-r2 +

+ bfy =0, (3.32)

__ 2an® 4 4n 4 3an < 30
- n+on<-a ’
—a{t —a)n? 4 2an® + 3n 4 3an —afn 4 22
ntarfa

b=

.(3.33)

The general solution of (3.32) is

fo = Cyt™ + Cyt™r, (3.34)
where wy and w, are the roots of the characteristic
equation

o?+aw +5=0, (3.35)
and C,;, C, are constants of integration.

One of the roots of (3.35), w; (the one with the
minus sign in front of the square root), is always
negative and does not represent instability. (In ad-
dition to that, the solution corresponding to this root
is not bounded for r — 0 and, therefore, C;y = 0,) The
other root of (3.35), w, (the one with the plus sign),
can take on different values depending on the particu-
lar values of n and o congsidered, and its sign is de-
termined by the sign of the free term in (3.35). For
a given o and sufficiently small n (but always n > 1)
the root of the equation is negative (the flame is sta-
ble), and for large n the root is positive (the flame
is unstable). The stability limit, which can be found
by equating b to zero, is shown in Fig. 2 (curve 1).
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The values of n for which the flame is stable lie be~
low the curve. It can be seen that as « approaches
either zero or unity the region of stability increases
without bounds.

This is due to the fact that different degrees of thermal expansion
during combustion correspond to different rates of growth of the per-
turbations. Figure 3 shows the rate of growth of the perturbations for
a plane flame as a funcrion of o, At the initial time this function
coincides with the function representing the dependence of the char-
acteristic frequency on a. (The figure shows the variable Qg= —iQ o/
Jupk, where ©, is the characteristic frequency according to Landau's
theory [1]. The variable g represents the distance, relative to the
combustion products, over which the flame must move in order that
the perturbation amplitude would change by a factor of e. The same
variable determines the onset of instability in the case of a spherical
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flame. ) It can be seen that Q, vanishes at o = 0 and at « = 1, The
maXimum value

ﬂmz'vg — 2
corresponds to
G =Y5 — 2.

In accordance with Fig. 3, curve 1 of Fig.' 2 has a2 minimum at a
value of o which is close to oyy.

The nature of the time change of the perturbation
amplitude of different spherical harmonics is shown
also in Fig. 4, which represents the function wy(n) for
various «. The points of intersection of the curves
with the axis of abscissas determine the critical val-
ues of the harmonics,

Thus, the solution of the problem of the stability
of propagation of a spherical flame in Landau's for-
mulation shows that instabilities occur only in the
case of perturbations with sufficiently large n, i.e.,
perturbations with short wavelengths, which, accord-
ing to Landau's solution for the plane flame, have the
highest rate of growth. However, it is precisely these
short-wave perturbations for which Landau's approach
ceases to be valid, since in the case of these pertur-
bations one must take into account the effect of the
transfer processes (viscosity, diffusion, thermal con-
ductivity) and of the chemical kinetics, which may re-
sult in a damping of the perturbations.

§4. Stability analysis with respect to high spheri-
cal harmonics. In order to account for the effect of
chemical kinetics and transfer procesgses on the sta-
bility of the flame in the case of perturbations corre-
sponding to high spherical harmonics, when the wave-
length is of the order of the flame front thickness, we
shall use Markstein's assumption [3]. Markstein's
assumption was that the over-all effect of transfer
processes and chemical kinetics on the flame can be
represented by a constant which relates the variation
of the normal speed of the flame with its curvature:

w=u(t+ L) (4.1)
(u and uy, are the perturbed and unperturbed flame
speeds, A is the radius of curvature of the flame front,
and u is a constant).

It should be noted that Markstein's approach is, essentially, the
next approximation to Landau's solution, and this approximation is
linear. Equation (4. 1) represents a series expansion of the flame speed
in terms of a small parameter p/A, which takes into account the
structure of the flame. From dimensional considerations, the constant
4, which has the dimension of length, must be proportional to the
flame front thickness, i.e., to i = g /ug, where % is the thermal
diffusivity of the gas and p is a2 dimensionless factor, which was left
undetermined in [3]. From general considerations it is clear that this
factor must be a function of the Prandtl and Lewis numbers, the ther-
mal expansion parameter o, and a dimensionless parameter which
characterizes the temperature dependence of the rate of the chemical
reaction. (In a first approximation it may be assumed that for large
activation energies the rate of the chemical reaction in the flame de-
pends only on the temperature in the reaction zone. ) In [107 this fac-
tor was calculated on the basis of the thermal-diffusion formulation

of the problem, distegarding the hydrodynamics. The formula obtained
for pg contained the large number E/2RTy, (E is the activation energy
of the chemical reaction, Ty, is the combustion temperature, and R is
the gas constant); therefore the factor y; can reach values of the order
1020,
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Fig. 6

The condition for the applicability of the linear approximation
#/A < 1 imposes a restriction on the minimum perturbation wave~
length for which the present formulation is meaningful. One cannot
consider perturbation wavelengths which are too small (n too high),
corresponding to such large curvatures that u/A >1, (Note, that due
to the increase of the wavelength corresponding to a given spherical
harmonic, at large values of time we may consider large values of n.)
Moreover, we cannot consider very low values of the radius R, such
that /R > 1, asin that case the speed of propagation of the unper-
turbed front is not constant.

The first restriction makes it impossible to determine the wave-
length for which perturbations decay instead of growing. The linear
correction canrnot be used to find the stability limit. If we regard
Landau's solution as the leading term of an asymptotic series for a
perturbation Reynolds number tending to infinity, then the introduction
of correction of the order p/A ~ 1 /N, should yield a correction for
the frequency ©, which characterizes the time variation of the pertur-
bations, of the form

F (o)
Q:Q#}—m}. 4.2)

Thus, Markstein's solution consists in determining the ;pecific
form of the function F(o). Incidentally, this point has not been men-~
tioned in [3], so that the expression for the frequency given there con-
tains not only terms linear in /A, but also higher order terms. Carry-
ing out the calculations, one obtains the formula for F(a)

F(cz):(l/a+a2—a9<§>1)/(i<}>a-—a2—— Va0 a3, (4.8)

The solution for the plane fiame (4. 2) shows a tendency for a vari-
ation of the characteristic frequency with decreasing perturbation wave-
length, In order to make the frequency change sign and, consequently,
to obtain a damping of the perturbations, one must extrapolate (4, 2)
to the range of wavelengths where 4/A ~ 1. The determination of the
stability limit by extrapolation of a linear correction constitutes a dif-
ficulty which is common to all existing studies of the problem.

The second restriction—the independence of the speed of propaga-
tion of the unperturbed flame of the flame front curvature—imposes a
restriction on the minimum time for which the present formulation be-
comes meaningful. Taking into account that the curvature of a spheri-~
cal surface is 2/R, we obtain from the condition 2u/R < 7 « 1 the
bound vat/u > 2/7.

To carry out the stability analysis of the present
problem we must change the boundary conditions (3. 2)-
(3.6): instead of (3.3) we must use the condition

ap:°

pl’+Tg:p,’+2ptv29a(1—a)%, 4.4)
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and instead of (3.6) we must use

(4.5)

vy, -+ or 8'-——aT-=——dvz—X—_

Since we are interested here in large n, for which the
spherical flame is unstable according to Landau's for-
mulation (n > 6, Fig. 2), we express the radius of
curvature A of the spherical harmonic in the form

8”(’;?;“1)=§n(”+1). (4.6)

L
A vt

Taking account of the boundary conditions (3.2),
(4.4), (3.4), (3.5), (4.5), and (3.7), we can obtain
a system of equations for the functions fi, fs, f3. fi
of the same form as (3.26)—(3.29). Only some of the
coefficients will be functions of time: the coefficient
of f, in (3.27) will have an additional term 2¢ (1 -
— a)u/A, and the coefficient of f; in (3.29) will have
an additional term —au/A. Reducing the system to a
single equation by the method used in §3, and taking
into account that é (u /A) / 81 = — (u / A), we obtain the
equation

F (o Bre) G Brea=0, @)
where
ao=oan(n 4+ 1) 2n 4+ 1)/ (n + an + a),
by = ay (n + 1),

(4. 8)

Although n is now considered to be large, we can-
not introduce any simplifications in the coefficient of
(4.7), since the variable o can be small (na ~ 1).
Moreover, we consider the last coefficient in the equa-~
tion near those values of n and « for which the coeffi-
cient vanishes.

We seek a solution of (4.7) in the form of a sum of
two terms. One term is the particular solution ob-
tained without taking into account the effect of the cur-
vature of the flame front on the speed, as in Landau's
formulation. The second term is a correction which
takes account of this effect, in the same way as in the
plane flame case [cf. (4.2)]. To find the correction
term it is convenient to introduce the new function U,
which reduces (4.7) to the form

A R [/ R LI
@.9)
o %)
T fa dr ]

The solution of the problem in Landau's approximation
is

u=0, U=~;‘—%fri=m=const.
(From here on we suppress the subscript on w.) The
solution we now seek is

U=o+%). (4.10)

(Here x(7) is a small correction factor, )

Substituting (4.10) into (4.9) and neglecting quadratic
terms, we obtain

%+(2®+0)X+M e =0. (4.11)

WYy
The solution of (4.11) is

% = K exp [— (20 + a) 7] — “<°’“°+”°)) et (4.12)

230 20 - a -1

where K is an arbitrary constant. The condition u = 0,
x = 0 yields K = 0, Thus, the solution of the problem
in Markstein's approximation is

1 (0ag + bo)

vt (20 +e—1) ° (4.13)

. vyt \@ -
fa == const (T) exp
It can be easily seen that the dependence of fy ont
for w > 0 (i.e., for the case when the solution accord-
ing to Landau's approximation predicts instability)
has a minimum at

vt G(w+n+1)
P o0+ ae—1)°

(4.14)

Such a dependence could be expected on physical grounds. At
small values of t the wavelength of the perturbations on the surface
of the flame is small, and the stabilizing influence of the curvature
on the speed of propagation is effective. Therefore the initial per-
turbations decay. When the dimensions of the flame increase (for
large values of t) the dimensions of the perturbations also increase,
yielding the instability predicted by Landau—the perturbations grow
with time.

For different n the minimum value of the relative
amplitude corresponds to different times. However,
for a given o there exists a value of the order of the
spherical harmonic for which the minimum is reached
faster than for other orders (n = n_). The value of n,
can be easily found from the graphical representation
of (4.14).

Figure 5 represents the relative amplitude of the
perturbations as a function of time for & = 0.2 and
various values of n in the coordinates Ig f; and 1g (vot/
/u) = 1g q. The straight lines in Fig. 5 represent the
solution based on Landau's approximation. The broken
line goes through the minima of the curves. For the
value of @ used in this figure n = 12.

The function n (a) is represented by curve 2 in
Fig, 2. This curve lies ingide the region bounded by
curve 1,

Thus, there emerges the following picture of the
development of the relative perturbations of the flame
surface: At first perturbations of all wavelengths de-
cay--the relative amplitude decreases. The different
harmonics decay at different rates. After a certain
time q, = vt */ u, the amplitude of one of the harmon-
ics (n = n,) passes through a minimum and begins to
grow. Subsequently the neighboring harmonics begin
to grow, and an instability develops.

It is convenient to define the onset of instability of
a spherical flame by means of the time Ay which de~
pends only on the thermal expansion parameter «. Fig-
ure 6 shows q_ as a function of o according to (4.14).
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For most flames, for which ¢ = 0,02—0.2, the corre-
gponding value is q, = 50—60.

§5. Discussion of results and comparison with ex-
perimental data. The stability of propagation of a
spherical flame was first investigated experimentally
by Zel'dovich and Rozlovskii [5]. Subsequenily, in-
stability phenomena were investigated in more detail
by Shchelkin and Troshchin and their collaborators
[6-8].

In all these studies the onset of instability is rep-
resented by a critical value of the Reynolds number,
based on the normal speed of the flame, the radius
of the flame sphere, and the viscosity of the cold com-
bustible mixture. It can be easily seen that the Rey-
nolds number thus defined is proportional to a dimen-
sionless time g3

u R

NRe=

e ﬁff—q (P is the Prandtl number). (5.1)

In the experiments it is difficult to establish at
what value of the flame radius one of the harmonics
begins to grow. Usually one can observe only such
gtates in which the perturbation of the surface is suf-
ficiently developed. In [5], for instance, the onset of
instability was defined by the transition from combus-
tion to detonation, i.e., by a state of high turbulence.
The corresponding values of the critical Reynolds num-
ber were high: 10°-~10%, In [6-8] the spherical flame
was observed photographically. The photographs were
used to determine the time dependence of the absolute
value of the surface perturbation. The onset of insta~
bility was defined as the time obtained by linear ex-
trapolation of this dependence to zero perturbation,
The critical Reynolds numbers determined by this
method were smaller by one order of magnitude (~10%).
However, in [6-—8] the different rates of growth of dif-
ferent perturbations (different n) were neglected,
which may lead to overestimated Reynolds numbers.

Regardless of the particular definition, the values
of the critical Reynolds number obtained experimental-
ly were in sharp disagreement with the predictions re-
garding the instability of a plane flame which were
based on Landau's theory. These predictions disre-
garded, however, the specific characteristics of a
spherical flame. The present results show that in the
case of a spherical flame the value of the critical Rey-
nolds number can be much higher than in the plane
cagse. We shall illustrate this result by means of a
numerical example.

Consider, for example, a flame with a thermal ex-
pansion parameter o = 0,2, This corresponds to a
critical time q, ~ 60 (Fig. 6). Assuming p, = 10, P =
=1, we obtain the result that the critical Reynolds
number for the harmonic with n=n_ is =600, i.e.,
two orders of magnitude larger than unity. Now let
us assume that the Reynolds number determined ex-
perimentally is not this critical Reynolds number,
but a Reynolds number corresponding to the time at
which the perturbations at the flame front reach their
initial values. Assume, for example, that the initial

perturbations (caused by the spark, say) ovriginated at
q = gy = 40. (This value of g can be regarded as the
initial time after which our original assumptions re-
garding the constancy of the speed of the unperturbed
flame hold. For a viscosity v; = 0.1 cmzfsec and a
flame speed up = 100 cm/sec, the flame radius at

dp = 40 is Ry = 0.4 cm, which is a reasonable value
for a flame after ignition, ) According to Fig. 5, the
perturbation with n =n « Will reach its initial value at
g = 100, and the corresponding Reynolds number is
~1430,

Although the numerical example demonstrates the
considerable increase in the critical Reynolds number
of a spherical flame as compared with a plane flame,
due to the specific characteristics of the spherical
flame, this is not sufficient to explain the experimen-
tal results in full. It can be assumed that the increase
in the Reynolds number is also due to nonlinear sta-
bilizing effects. One such effect has been discussed
by Zel'dovich [11].

It is interesting to compare qualitatively the experimental data
with the theoretical results. The photographs of the flames shown in
{6-8] indicate that the instability of a spherical flame develops in
the following way: First there appear large-scale perturbations, due
to the perturbing effect of the spark, and these perturbations decay as
the flame grows. After a certain time there appear perturbations on a
much smaller scale than the initial ones, and these perturbations grow,
reach considerably large dimensions, and form cellular flames, which
eventually become turbulent. It should be noted that in the case of
fast-burning flames the scale of the "secondary™ perturbations is small~
er, and these develop faster. The growth of the instability is strongly
affected by the composition of the combustible mixture and, in par-
ticular, by the ratio between the thermal diffusivity and the mass dif-
fusivity of the component which controls the combustion reaction. The
onset of instability occurs sooner as the pressure increases.

These experimental results are in qualitative agreement with the-
oretical results, (For example, the effect of the composition of the
combustible gas on the stability can be explained by a variation of
the value of Markstein's constant [10], the effect of the pressure can
be seen from the definition of the Reynolds number, the effect of the
combustion temperature can be seen in Fig. 2, etc.)

In conclusion, we would like to express our grati-
tude to Ya, B. Zel'dovich for suggesting the problem
and for his constructive criticism, and to G. I. Baren-
blatt, O. I. Leipunskii, and Ya. K. Troshchin for
their valuable discussions.
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